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Abstract.

Transient acoustic wave propagation is analyzed for the case of

plane-stratified fluids having density p(y) and sound speed c(y) at

depth y. For infinite fluids it is assumed that the (in general

discontinuous) functions p(y), c(y) are uniformly positive and bounded

and satisfy

,,AA (py)- (±o C C(±y), (c (y) - c Ctqo)J C < Y

for ±y > 0, where a > 3/2. Semi-infinite and finite layers are also

treated. The acoustic potential is a solution of the wave equation

;2u -U

at c 2 (y) p(y) V -:(p-(y)Vu) f(t,x,y)

where x - (x1,,x2 ) are horizontal coordinates and f(t,x,y) characterizes

the wave sources. The principal results of the analysis show that u is

the sum of a free component, which behaves like a diverging spherical

wave for large t, and a guided component which is approximately localized

in regions (y - yj) < h where c(y) has minima and propagates outward in

horizontal planes like a diverging cylindrical wave.
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§1. Introduction.

This report presents an analysis of the structure of transient

acoustic waves in stratified fluids whose densities and sound speeds are

functions of a single depth coordinate. The acoustic field in such a

fluid may be described by a real-valued function u(t,x,y) (the acoustic

potential or the excess pressure) that satisfies the wave equation

(1.1) 2u - (y) p(y) V (p- (y)Vu) - f(t,xy)

where t is a time coordinate, y is a depth coordinate, x - (x1 ,x2 ) are

Cartesian coordinates in a horizontal plane, V - (D/axja/ax2,a/ay) and

f(t,x,y) is a function that characterizes the wave sources. c(y) and

p(y) are the variable sound speed and density, respectively, and

P I(y) - 1/p(y).

This report is a sequel to the author's report (12] on "Spectral

Analysis of Sound Propagation in Stratified Fluids." That work contains

a spectral analysis of the acoustic propagator

(1.2) Au - -c 2 (y) p(y) V * (p- (y)V u)

for the cases of an unlimited fluid (- < x1 ,x2,y < -), a semi-infinite

layer (-- < x1,x2 < c and 0 < y < -) and a finite layer (-- < x,,x 2 <

and 0 < y < h < o). The integration of (1.1) below is based on the

spectral-analysis of (12] and the notation and results of [12] are used

throughout this report. As in [121, only the case of an unlimited fluid

is presented in detail. The modifications required in the second and

third cases are described in §6 at the end of the report.
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The analysis of the structure of transient acoustic waves in

plane stratified media was initiated by the author in 1973 [7]. This

work dealt with the special case of the Pekeris profile (propagation in

a half-space, p(y) - const., c(y) piecewise constant). In 1974 the

results were extended to the symmetric Epstein profile (p(y) - const.,

C-2 (y) - K sech 2 (y/H) + M) [8]. The general Epstein profile

(p(y) const., c-a(y) - K sech 2 (y/H) + L tanh (y/H) + M) was treated

in 1979 [111 using the spectral analysis of the Epstein operator due to

Guillot and Wilcox (2, 3]. A preliminary version of (11] was announced

in 1978 [1]. The analysis of these cases was based on explicit

representations of their normal mode functions by means of well-known

special functions. Extension of the analysis to larger classes of strat-

ified fluids had to await the extension of the spectral analysis of the

acoustic propagators (1.2) to such classes.

The class of stratified fluids treated in [12] was characterized

by the properties

(1.3) p(y) and c(y) are Lebesgue measurable,

(1.4) 0 < pm P(y) PM < ' 0 < cm < c(y) CM <

(1.5) ± I Jp(y) - p(±c)I dy <' ±J0 Ic(y) - c(±) dy < 00,

where Pm, pM' p(±-), cm, CM and c(±-) are constants. In this report the

results of [10] and (11] on transient acoustic waves in stratified fluids

are extended to the class of fluids characterized by (1.3), (1.4) and
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Ip(y) - P(±)[ < c(±Y) -aC

(1.6) for ±y > 0,

Ic(y) - c(+o)l < C(±y) "

where C and a are constants and

(1.7) a 3
2I

It is clear that (1.6) implies (1.5). It will be seen from the analysis

below that (1.6) could be replaced by other order conditions at y = ±-0.

It is not known whether the results of this report hold for the entire

class of luids defined by (1.3), (1.4), (1.5).

The remainder of this report is organized as follows. In §2 the

normal mode expansions for unlimited fluids of [12] are used to decompose

transient acoustic fields into free and guided components and to obtain

integral representations of these components. The behavior for large t

of the free and guided components is derived in §3 and §4, respectively.

In §5 these results are used to calculate the asymptotic distribution for

large t of the wave energy. §6 presents corresponding results for

semi-infinite and finite layers.
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§2. Normal Mode Expansions of Transient Acoustic Fields.

The integration of the wave equation (1.1) will be based on the

spectral analysis of the acoustic propagator A in the Hilbert space

- L2 (R3,c -(y) p- (y) dxdy), as developed in [12]. To this end (1.1)

is interpreted as the equation

(2.1)d 2u
(2.1) d 2 + Au = f(t,'), t E R,

for a function t - u(t,') E X. The wave sources will be assumed to act

during a time interval [0,T], so that supp f C [0,T]. The corresponding

acoustic wave is the solution of (2.1) that satisfies the initial

condition

(2.2) u(t,') = 0 for all t < 0.

The solution, based on the spectral theorem for the selfadjoint operator

A > 0, is given by Duhamel's integral

(2.3) u(t,.) j {A-'12 sin (t - T)A1 2} f(T,.)dT, t > 0.
0

Indeed, if f E C((0,T],) then (2.3) is the unique "solution with finite

energy" of [6], while if f E C([O,T],D(A"/2 )) then (2.3) is the "strict

solution with finite energy." In addition, if f E C([0,T],D(A - 1/2 )) then

(2.4) u(tx,y) = Re {v(t,x,y)}

where v(t,.) is the complex-valued potential defined by

5
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(2.5) v(t,-) - i exp {-itA1/ 2 } A- 1/2 J exp {iTAI/2} f(T,")dT.
0

In particular,

(2.6) v(t,) exp {-itA1/2 } h for all t > T

where

(2.7) h = i A- 1/2 expT A12} f(T,-) dT.

The initial value problem

(2.8) d2u

dt + Au 0 for t > 0,

(2.9) u(0) = f, du()

dt 9

can be treated by the same formalism. Indeed, if f E D(A1/ 2 ) and

g E D(A-1/2 ) then the solution of (2.8), (2.9) is given by (2.4), (2.6)

with h = f + i A- 1/2 g E D(A1/2 ); Cf. [9, Ch. 3].

The integral

(2.10) E(u,K,t) J {IVu1 2 + c-2(y)D} P1 (y) dxdy
K [t

may be interpreted as the energy of the acoustic field u in the set

K C R3 at time t. Moreover, A is the selfadjoint operator in I asso-

ciated with the sesquilinear form A on K defined by D(A) = L2(R 3) C y

and
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(2.11) A(uv) J Vu Vv p 1 (y) dxdy

It follows from Kato's second representation theorem [4, p. 331] that

D(A1 / 2 ) - L'(R 3) and for all u E D(A1/2 )

(2.12) iA / 2 uI = A(u,u) = J IVu 2 p- (y) dxdy.X ~JR 3

Hence the total energy satisfies

(2.13) E(u,R 3 ,t) = IAA/ a2uI +Iat l[

If h E D(A/2) and u is defined by (2.4), (2.6) then a simple calculation

shows that

(2.14) E(u,R 3 ,t) = 0 A'/2 hiI for all t > T.

The analysis of the structure of the acoustic potential (2.4),

(2.6) presented below is based on the normal mode expansion for A of

[12, §8]. The orthogonal projections {P+,P_,P 0 ,P ,P 2 ,...} in X defined

by the normal modes form a complete family that reduces A [12,

Corollaries 8.4 and 8.10]. Hence the same is true of the orthogonal

projections

(2.15) Pf = P+ + P_ + Po

and

N0 -1

(2.16) P 9 1 P k"

k-i
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This provides a decomposition

(2.17) u(t,') = uf(t,') + u (t,')

into orthogonal partial waves

(2.18) uf(t,') = Pf u(t,.), U (t,') = P u(t,').

The function uf, called the free component of u, will be shown to behave

for large times like a diverging spherical wave. The function Ug, called

the guided component of u, will be shown to be approximately localized

near one or more of the planes y - const. where c(y) has local minima and

to propagate outward in horizontal planes like a diverging cylindrical

wave. This second component shows the profound effect of acoustic ducts

on transient acoustic waves. It is absent when c(y) has no local

minima..

.. . .I . . . . . . " " . . . . . . . . . I I i ~ i . .. . . . . . . • ,J



§3. Transient Free Waves.

The normal mode expansions of [121 are used in this section to

calculate the asymptotic behavior for t - o of the free component

uf(t,') - Pf u(t,'). The principal result is that in each of the half-

spaces R 3(d) and R3(d), where R 3(d) - {(x,y) : -(y - d) > 0}, uf(t,.) is

asymptotically equal to a wave function for a homogeneous fluid with

propagation speed c(-) and c(--D), respectively. It is this behavior

that motivates the term "free component" for uf(t, ).

It will be assumed that the total acoustic potential u satisfies

u(t, °) - Re {v(t,')} where v(t,') - exp {-itA } h and h E D(A /2)

(see §2). The corresponding partial waves Uk(t, ) - Pk u(t,') with k > 1

satisfy uk(t,*) - Re {exp (-it A'/ 2 ) Pkh}. This follows from the fact

that the normal mode functions k(y,p) are real for k > 1, which implies

that Pk(h) = Pk(h). It follows by addition that u (t,") =

Re {exp (-it A"/ 2 ) P h} - Re {v (t,)} and hencegg

. uf(t,.) - Re {vf(t,.)},

(3.1)j

vf(t,') - exp (-itA1/2) Pfh - exp (-itA1/2) hf.

The normal mode representations

(3.2) vf(t,x,y) - f 3+(x,y,p,q) exp {-itX'/2 (p,q)} h+(p,q) dpdq

of [12, §8] provide the starting point for calculating the asymptotic

behavior of uf(t,x,y) for large t. The integral in (3.2) will, in

general, converge only in X. For brevity the 3-lim notation of [12] is

suppressed in this report.
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Equation (3.2) gives two representations of vf corresponding to

the two families + and *. The calculations below are based on the

_-representation which .has been found to yield the simplest form of

the asymptotic wave function. It will be convenient to introduce the

characteristic functions X+, X0 and X_ of the cones C+, CO and C_ in

(p,q)-space (12, (1.48)-(1.51)] and to decompose h_ as

(3.3) h (p,q) - 9.(p,q) + m(p,q) + n(p,q)

where Z - x+ h_, m - X0 h- and n = X_ h_. The corresponding decomposi-

tion of Vf is

(3.4) vf V + Vm + vn

where

v9 = exp (-it A1 2 ) 09i

(3.5) v - exp (-it A1 /2) D*m

v - exp (-it A1/2) *n

The behavior for t - of these three functions will be analyzed

separately.

Behavior of vj. The partial wave v has the representation

(3.6) v2(t~xy) - _(xy,p,q) exp(-itw+(p,q)) L(p,q) dpdq

where

(3.7) W±(p,q) c(±oo) /Ip + q



11

(Recall X(pq) - w (pq) for ±q > 0.) To discover the behavior of

vz(t,x,y) for (x,y) e R2(d) and t - - it will be convenient to write

0_(x,y,p,q) in a way that puts in evidence its behavior for y - -+. To

this end recall that by [12, (1.53)-(1.60)]

(3.8) 0_(x,y,p,q) - (270) - 1 c(-)(2q) 1/2 ei px 4(y, IpIA)

for (p,q) = X+(p,X) E C+ (and hence X = X(p,q) - c 2 ()(1p1 2 + q2)).

Moreover, by [12, (4.5), (4.6) and (8.41)] one can write

1/2

1P~(yiX) 1/2T+(jX) C'L(yIIA)
471q+(p, X)] T+j )0 yU

(3.9) /

fp( )1/2 T+(y,p,X) exp {-iyq_(),X)}" 4Or+(Ii, X)

where

(3.10) T+(yI,"A) =T+(1,X) 4(y,XX) exp {iyq_(1j,X)}T+(J,X), y _

Similarly, by [12, (4.1) and (4.6)-(4.11)] one can write

+(Y'X) " ()1, 2 [1+(y,,.) exp (-iyq+(V,,X)}

(3.11)
+ R+(y, p,X) exp {iy q(U.A)}]

where

I+l(y, 1j,X) - $ 2 (y, u,X) exp {y q(u, X)} 1

(3.12) 1  y +W.

C R+(y,oi) R+( ,) d (y,,X) exp {- y q+(PX)I R+(pX)

Combining (3.6), (3.8) and (3.11) gives
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vz(t,xy)

= c() p(o) l/2 (27T)-3/2 exp fi(x. p+yq- tw+(p,q)} I+(y, IpI,X) t(p,q)dpdq
C+

(3.13)

+ c(_) p (_)I 1/2 (2T) -3/2 f exp {i(x" p-yq- tw+(p,q)} R+(y, I p,XT)(p,q)dpdq.
C+

It is natural to expect that in R3 (d) the partial wave vk(t,x,y) will

propagate as t into regions where y is large and hence I+(y,IpI,x)

and R+(y, IpI,X) are near their limiting values. Thus the representation

(3.13) suggests the conjecture that

(3.14) vL(t,') v(t,) + v'(t,) in L2 (R3(d)), t -o

where vk and vi are defined by

(3.15) vO(t,x,y) =c(C)p()1/2 (2) -3/2 exp {i(xp+yq- tw+(p,q) }(p,q)dpdq
C+

and

v (t,x, y) - c(o p&)1/2 (2)-3/ 2 J exp {i(x'-p-yq - tw+(p,q)} x
JC+

" R+(Ipl,A) £(p,q)dpdq

(3.16)

M c( )p( )1/2 (2'r)-3/2 J exp {i(xp+yq - tw+(p,q)} x

X R+(pl,IA) l(p,-q)dpdq

where -C - {(p,q) (p,-q) E C+} - {(p,q) : q < -alpi}. Note that vi

and v1 are waves in a homogeneous medium with density p(-) and sound

speed c(-). More precisely,
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v(t, ) exp (-it c(a) A 1/2) h
(3.17)

v(t,.) = exp (-it c() A 12) hl

where A 0 is the selfadjoint realization in L 2 (R
3) of

-4 - -(a 2/ax + a2/ax4 + a2/ay 2) and ht and hl are the functions in

L2 (R
3) whose Fourier transforms are

hy(pq) - c(o) p(Y) 12 ,(p,q) - c(P) X2)+(p,q) h_(p,q),

(3.18)

[h'(p,q) -c(-) k()/ (p[p,,- (,-q)

- c(°o) p(a)1/2R+ (Ipl,X) (1 - X+(p,q)) h(p,-q).

Both functions are in L2 (R ) because h E L2 (R ) and IR+(Ip,A)l <pP(oo) by
the conservation law [12, (1.46)]. Moreover, supp h' C -C + and hence

the theory of asymptotic wave functions for d'Alembert's equation

[9, Ch. 2] implies that vl(t,') - 0 in L2 (R3(d)) when t + . Combining

this with (3.14) gives

(3.19) v (t,-) ~ v'(t,.) in L2 (R (d)), t o.

Now consider the behavior of v (t,x,y) for (x,y) E R3 (d), t .

Combining (3.6), (3.9) and (3.10) gives

v9(t,x,y) _ c(_) p(_o)1/2 (2n)-3/2 J exp (i(x.p+yq_- t+)} x

(3.20) C+
x T+(y,Ip[,X) R.(p,q)dpdq

where q_ - q_(tp,X), w+ - w+(p,q) and X - X(p,q) W2 (p,q). This

representation suggests that
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(3.21) v (t, v ) in L2(R
3(d)), t 

where

v (txY) c(_) p(_)1/2 (27T) -32 exp {i(x p + yq_- tw) x

(3.22)

x T+(Tp ,X) 9.(p,q)dpdq

t Now the mapping (p,q) * (p,q') = X'(pq) - (p,q_([plw+(pq))) with

domain C+ has range X'(C+) = R+3= R+(0), Jacobian B(p,q)/D(p,q')

- c -()q'Ic (-)q and satisfies w+(pq) w=(p,q'). Thus (3.22) implies

the representation

v (t,x,y) _ c() C ( )1/2 (21r)3/2 Rexp {i(x p+yq' -tw)}

(3.23)
x T+(Ipl,wZ(p,q')) ,(p,q)(c2(-)q /c2(-o)q)dpdq '

where q - q(lp,q') = /a 2 (jp) ' + q,2 ) + q,2 . Note that

(3.24) v 2(t,_) - exp (-it c(--a) A1/2) h2

where h2 E L 2 (R
3) has Fourier transform

(3.25) hg(p,q')uc(o) p(=)1/2T (]plw_(p,q')) X(p,q)(c 2(-_)q'/c (-)q).

Since supp h2 C R3 the results of [9, Ch. 2] imply that v2 (t,.) - 0 in

L2 (R
3 (d)) when t o. Combining this with (3.21) gives

(3.26) v (t,-) - 0 in L2(R
3(d)), t wo

Analogous conjectures concerning vm(t,.) and vn(t,.) will now be

formulated. Only the main steps of the calculations will be given since

the method is the same as for v9.(t,*).
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Behavior of vm . vm has the representation

(3.27) Vm(txY) = 0_(x,y,p,q) exp (-it w(pq)) m(p,q)dpdq,

by (3.5), where

(3.28) (x,y,p,q) - (2T)-xc(-)(2q)lI e ip 'X *(y,lpI,X)

for (pq) - Xo(p,k) E C, (and hence X - X(p,q) - w(p,q)). Moreover

(see [12, (4.18)-(4.24)]),

(3.29) po(Y'i,') 1 I412-(-,I T, (y,u ,X) exp (yq'(p,X))

where

(3.30) To(y,ij,X) - To(i,X) 43 (y,w, X) exp (-yq'(1,)) T0 (p., X), y -

and

- p [I(ypX) exp {-iyq+(, A)}

(3.31)

+ Ro(y,,N) exp {iyq+(u,.X)}]

where { Io(y,. X,) - 02(y,1j.X) exp {iy q+(p,A)} 1

(3.32) y ®.

RO (y, pX ) - Ro(UX) (y,VX) exp i-yq+CIX) Ro(pX)
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Combining (3.27), (3.28) and (3.29) gives

V (t,x,y) C(_') p(0)1/2 (2f)-3/2 J exp {i(x- p- tw+)}

(3.33)

x To(y, IpI,) exp (yq')m(p,q)dpdq

where w+ w+(p,q), X w- (p,q) and q" - q'(jpl,X). Since

(3.34) T(y,ipl,,X) exp (y q'(Ipl,X)) - 0, y - ,

equation (3.33) suggests that

t
(3.35) vm(t,-) - 0 in L2 (R

3 (d)), t o.

Similarly, combining (3.27), (3.28) and (3.31) gives

vm (tx~y) _ c(_) p(oo)1/2 (21T) -3/2 exp {i(x. p+yq- tw+)} x
Co

x I 0 (y'[pj, .X) m(p,q)dpdq

(3.36)

+ c(o) p(-)'/2 (27r) 3/2 exp {i(x p-yq- tw+)} x

x Ro (y,IpI,X) m(pq)dpdq

which suggests that

(3.37) VD(t,') - vmO(t,) + vml(t,') in L2(R (d)), t - o

where vm and vm1 are defined by

f v (t,.) - exp (-it c(-) AD/2)hm

(3.38)

vm(t,.) - exp (-it c(-) A1/2 ) h'm
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and hm and h
1 are the functions in L2 (R

3) whose Fourier transforms are

J hm(p'q) - c( ) p(o)12m(p,q) - c(-) P(-) 1 X0 (p,q) h(p,q),

(3.39)

9 (p,q) _ c(oo) p( )2 Ro(p ,X) m(p,-q)

- c(c) p(ao)1/2 Ro( p ,X) (1 - x0(Pq)) h_(p,-q)

Note that supp h C R3 and hence vm(t,') - 0 in L2(R3(d)) when t .
m - +~

Combining this with (3.37) gives

(3.40) Vm(t , ' ) - vO(t, ") in L2 (R (d)), t .

Behavior of vn . vn has the representation

(3.41) Vn(t'x'y) i J _(x,y,p,q) exp (-it w_(p,q)) n(p,q)dpdq,

by (3.5), where

(3.42) 0_(x,y,p,q) - (2)-I c( - - ) ( 2 1q l ) 1/ e (y,p,x)

for (p,q) - X(p,X) E C (and hence X - X(p,q) - w2 (p,q). Moreover

(see [12, (4.5) and (4.12)-(4.17)1),

(3.43) P-Y P (- (4 q( ,) T_(y,vi,X) exp {iyq+(Ii,X)}

where

(3.44) T(y,ii)-T(X) 4l(y,iX) exp{-iyq+(iX)}-T_(iX), y -
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and

- ~ 12(Y'') 14q(,1 l(,,) exp {y q_(p,k)

(3.45)

+ R_(yi,X) exp {-iyq_(pX)}]

where

(3.46) y 4.YIJ~c -00.~+I

R(y,I,X) - R (Y- I",X) exp {iyq_(u,X)}R_(vX)

Combining (3.41), (3.42) and (3.45) gives, after simplification using

qc(Ip,W 2 (p,q)) - (q 2 )1 2 _-q for (pq) E C,

vn(tx,y) = c(-o) p(a) 1/2 (21) 3/2 J exp {i(x' p+yq- tw_)} x

x I_(y,Ipl,X) n(p,q)dpdq

(3.47)

+ c(_) p(__) 1/2 (2)- 3/2 J exp (i(x - p - y q - tw_)
fc-

x R_(y,lpl,X) n(p,q)dpdq.

This suggests the asymptotic behavior

(3.48) v (tO) - Vn(t,) + v-(t,') in L2(R
3 (d)), t

where

.49 v(t,) exp (-it c((-) A1/2) h

(3.49) { v(t,)- exp (- it c (-cc) A 1/2 ) h,'
IV
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and hn and hn are the functions whose Fourier transforms aren n

h (p,q) = c(-°) p(-_) 112 n(p,q) = c((--) p(--)lV2 X_(p,q) h_(p,q),

(3.50)

hn(p,q) = c(--) p(_.o)1/ 2 R_(IpIX) n(p,-q)

= c(--) p(-o) / 2 iR(IpI,X) (I - X_(pq)) h_(p,-q).

Note that supp hn C R3 and hence vl(t,') - 0 in L2(R (d)) when t .
n +n

Combining this with (3.48) gives

(3.51) Vn(t,') - v°(t, ") in L 2(R2(d)), t o.

Finally, combining (3.41), (3.42) and (3.43) gives

vn(t,x,Y) = c(__) p(_.) 1/2 (21)-3/2 J exp {i(x p- y q+ - tw) x

(3.52)

x T_(y,lplX) n(p,q)dpdq

where w_ - w_(p,q), X = w 2 (p,q) and q+ q+(IpI,X). This suggests that

(3.53) vn(t,.) - v(t,.) in L2(R3(d)), t *

where

2, rt ,Y p 12 -/
vn(t,x,y) c(_ao) p(_o) 1/2 (21T)-32 J exp {i(x. p - y q+- tw-)}

(3.54)

x T_(Ip,X) n(p,q)dpdq.

Now the mapping (p,q) (p,q') - X"(p,q) - (p,-q+(p,X(p,q))) maps C_

onto X"(C_) -C+, has Jacobian a(p,q)/a(p,q') - c 2 (-)q'/c 2 (--)q and
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satisfies w_(p,q) w+(p,q'). Thus

(3.55) vn2 (t,) = exp (-it c() A1/2) h 2

n 0 n

where h2 has the Fourier transform
n

h;2(p,q,) =(_)(_) /T_(Ipl,w+(p,q,)) n(p,q(p,q')) x

(3.56)
x (C2 (-) q /C2(--o)q).

Moreover, supp hn C R _ and hence v -t,) 0 in L2(R (d)), t + =.

Combining this with (3.53) gives

t3
(3.57) vn(t,°) ~ 0 in L2 (R (d)), t .

The asymptotic behavior of vf(t,') for t may be obtained from

the three cases analyzed above by superposition, equation (3.4). Thus

equations (3.19), (3.26), (3.35), (3.40), (3.51) and (3.57) imply

- J v (t'°) + v°(t,-) in L2 (R'(d)) .

(3.58) vf(t, ° ) t

Vn(t,) in L2 (R_(d))

On combining this with the definitions of v , vm and v , equations (3.17),

(3.18), (3.38), (3.39), (3.49) and (3.50), one is led to formulate

Theorem 3.1. For every h E X let v;(t,.) be defined by

(359 v(tx~) exp (i t c(- A'/2) h+ (x, y) , (x, y) E R' (d) ,

(3.59) vof(t,x~y)
exp (it c-) A 1/

2 
) h-(x,y), (x,y) r= R3(d),

where h+ and h- are the functions in L2 (R3) whose Fourier transforms are

given by

I
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3)hc(pq) = c() P()2 h (p,q), (p,q) E R+,
(3.60) (,q

0 , (p,q) E R ,

and

0 ,(p,q) E R+,

(3.61) h (p, q)
C(- o P(-1)2 h- (p, q), (p, q) E R' .

Then

(3.62) lim I vf(t,) - v,(t,)Ix= 0.

Theorem 3.1 implies corresponding asymptotic estimates for the

free component uf(t,') = Pfu(t,-) = Re {vf(t,')} of the acoustic potential

u(t,'). Indeed, if uf(t,') is defined by

(3.63) uO(t,') - Re {vo(t,*)}

then Theorem 3.1 and the elementary inequality lRe zj < Jzj imply

Corollary 3.2. For all h E X one has

(3.64) limr Iuf(t,) - uO(t,-) 0 = 0.
t-KOo

If the initial state h has derivatives in IC then uf(t,-) and

uO(t,") have the same derivatives in I( and (3.64) can be strengthened to

include these derivatives. In particular, one has

Corollary 3.3. For all h E L2(R 3) - D(A 12) one has

(3.65) lir ID uf(t,') - Dj u1(t,.)U 0, j 0,1,2,3,
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where Do W 9/at, D, = a/aX1 , D2 W Ia/x2 and D3 
3ly. Equation (3.65)

is equivalent to convergence in energy:

(3.66) lrm E(uf - u',R 3 ,t) = 0.

t-

Corollary 3.3 can be proved by applying the method of this

section to the derivatives D v (t,-) (j = 0,1,2,3) which are given by

integrals of the same form as (3.2). Detailed proofs for the case of the

Pekeris profile were given 'n [10].

Proof of Theorem 3.1. The remainder of this section is devoted

to the proof of Theorem 3.1. The decomposition (3.3) is used for the

proof. Moreover, for brevity, only the asymptotic equality (3.53) for

vn(t,') is proved. The remaining five cases, namely (3.14), (3.21),

(3.35), (3.40) and (3.48) can be proved by the method used for (3.53).

As a first step, (3.53) will be proved for the special case of n(p,q)

E C0(C_), the set of continuous function with compact supports in the

open cone C_. The general case will then be proved by using the fact

that C0 (C_) is dense in L2 (C_).

For functions n(p,q) E C0 (C) the integrals defining v and v 2

n n

converge point-wise, as well as in X, and one can write

V (t'xy) - vn(txy)

(3.67)

- C(-_) p( 12)/Z (27r)-1/2 fR exp (ix* p) w(y,p,t)dp

where

[I1I I II . . . . . . . . ., . . .,. . . . . . .
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(3.68) w(y,p,t) f exp {-i(yq +tw_)} [T_(y, Ip _w2) - T_(Ipjl,w_)n(pq)dq.

Parseval's formula in L2(R
2 ), applied to (3.67), gives

(3.169) JIV (,x~y)- V (t,X, Y) 2dx C 2 (.W) p (-~)(27r)f I w(y,P, t) 12 dp.

On integrating this over y > d one finds

(3.70) Ivn (t, )(t, l(R(d)) aC(-_) p(-) 12(27T)-/2 lw(-, t)IL(R(d))

The last relation implies that to prove (3.53) it is sufficient

to prove that

(3.71) w(-,t) - 0 in L 2 (R3(d)), t - .

To this end it will be convenient to change the variable of integration

in (3.68) from q to w = w_(p,q) - c(- ) VIpl 2 + q2 . Solving this

equation for q < 0 gives q - -(w2 C-2(-,,) - Ip1 2)1 /2  - _q_(Ipl,w) with

w > c(-o)IpI. Hence (3.68) can be written

(3.72) w(y,p,t) f exp (-itw) W(y,p,w)dwi(.- ( ) 1Il

where

W(y,p,W)

(3.73)
C-5c " exp J-iy q+( Ip1,W2)}[T_ (y, I I Tp ,t2 )lPlW2))W

q_(IPl ,W2)
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The assumption that n E Co(C_), together with (3.44), implies that

W E C0 (R x r) where r = {(p,w) : W > c(-)Ipl}. Moreover, by a standard

partition of unity argument, one may assume without loss of generality

that

(3.74) supp W(y,.) C {(p,w) :pI < p0 and 0 < wo < w < }

for all y E R where "o > c(-)p 0. This in turn implies that

(3.75) v(ypt) - exp (-itw) W(yp,w)dw

0

and

(3.76) supp w(y,.,t) C B(p0) { (p jpI _ p0
1

for all y E R and t 6 R. Thus

( Lt)I (R1(d)) m f 1 B(po) w(yp,t)12 dpdy

(3.77)

+ f" f Iw(y,p,t) dpdy

yo B(p0)

for any y. > d. The proof of (3.71) will be derived from (3.77) and the

following two lenas.

Lemma 3.4. Let n E C0(C_) and assume that (3.74) holds. Then

for each d e R, y0 > d and p0 > 0 one has
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(3.78) lrm w(y,pt) 0 0

uniformly for all (y,p) E [d,y o ] x B(po).

Lemma 3.5. Under the hypotheses of Lemma 3.4 there is a constant

C - C(n) such that

(3.79) Iw(y,p,t) I < C Y

for all y > 0, p E B(p0) and t E R, where a > 3/2 is the constant of

condition (1.6).

Proof of Lemma 3.4. The proof is based on a well-known proof of

the Riemann-Lebesgue lemma. Note that by (3.75) one has

w~y~p~,) ( 7r/ t )

w(ypt)= exp (-iw t) W(y,p,w+(7r/t))dw
w o- (r/t)

(3.80)

= exp (-itw)[W(y,p,w) -W(y,p,w+(7r/t))]dw
WO

1 °

-- O exp (-itw) W(y,p,wr((r/t))dwo
2 o_ (T/t)

+ exp (-i twt) W(y,p,wo+(7Tlt))dw.
2

The limit relation (3.78) is obvious from (3.80) and the continuity of

W. The uniformity of the limit follows from (3.80) and the uniform

continuity of W on compact subsets of R x r.

Proof of Lemma 3.5. Note that by (3.72), (3.73) and (3.44) one

has the estimate
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(3.81) jw(y,pt)j < f I z(y, Ipw 2 )exp{-iyq+(Jp,w 2 )} - l M(p,w)dw

0

for all y, p and t where

(3.82) M(p,W) J (--) IT_(IpIW 2 ) q..(IpI1W2)

I q_( Ipl,w')

* is continuous for I[p < po, we <_ W < W1. It follows that for any y E R,

p E B(po) and t E R

(3.83) Iw(y,p,t) f M0 sup 1 1(yjpj,w2 ) exp {-iyq+(Ipi,W2 )} -1i

where M0 - M 0(n) - sup M(p,w) and the suprema are taken over all I[p < P0

.d wo < w < w . The proof of (3.79) will be based on (3.83), conditions

(1.3), (1.4), (1.6) on p(y) and c(y) and the proof in [12] of Theorem

2.1; see [12, p. 27ff]. Note that because of the continuity of w it will

suffice to prove (3.79) for all y > y, where y, - yl(n) is a positive

constant.

The solution 01 (y,1,A) with A > c
2 (-)p 2 > c2 (oo)p 2 satisfies

[12, p. 27ff]

(3.84) *1 (y, p,X) - exp iyq+(pIA)} (n1 + n2 )

where n - (ri,,n 2) is characterized on y > y1 as the unique solution of

the integral equation [12, (2.64)] which can be written

(3.85) n - n 0 + K(j,,)n, no - (1,0).

The kernel K(y,y',U,X) - (Kij(y,y',,XA)) is defined by

S
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(3.86) K j(y,y',j,A)

and

K~jy~,,, I0 'Yi < Y' < y '

(3.87) K2 (y',) 4
(3 .8 ) K2j (~ y~ ~ x) -exp {-2 1(y-y')q+ (I,X) E2j(y "' , ), y ' _> y '

where [12, p. 27]

(3.88) E(y,W,X) - B-I(P,X) N(yP,X) B(jA).

From these relations one has [12, (2.64)]

01 (yli,)) exp {-iyq+()i,X)} - 1 = 12 -

(3.89)

- Ej(yI',IA) T1 (y')dy' - Jexp {-2i(y-y')q+(P,X)} E2j (Y',,X)n (y')dy'

y y

and hence

2
(3.90) JOI(y,p,X) exp{-iyq+(U,X))-ll <_J Ek(Y',V,X) In(Y') IdY ' -

J,k- y

Using [12, (2.66)] and the continuity of B(p,X) on X > c1 (-)u 2 it can

be shown that

(3.91) IK(PX)l < 1/2 for 0 < p < Po, w < X < W

provided y1 - y,(n) is large enough. Thus
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0
(3.92) l I 1 - IKI -< 2

for 0 < P < p0 , W2 < < W2. Combining this with (3.90) and [12, (2.66)]

gives

cc 2

I~ 1(yi,X) exp{-iyq+(+0,)}-i1 < 2 1 lEjk(Y',lA)I dy'

(3.93)

y Ip(y') - p(-)j dy'

+c 2 f Ic(y') - c(o) dy'

for the same values of u and X where C1 and C2 depends only on p0, w0

and w,. It follows from (3.93) and (1.6) that

(3.94) sup ij(yjpj,w2) exp {-iyq+(lplw 2)} - o < Y

for all y > y,(n) where C3 depends only on p0, w0 and w, (i.e., n).

Combining (3.94) with (3.81) gives (3.75).

Proof of Theorem 3.1 (completed). Lemma 3.5 implies that

(3.95) Iw(y,p,t)1 2 dpdy < (Wp2 C2/2a - 3)y3-2a
y0 B(po)

where 3 - 2a < 0. Thus given any c > 0 there is a y. y0 (s,n) such that

(3.96) f J Iw(y,p,t)1 2 dpdy < c

yo B(po)
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for all t E R. Equation (3.77), together with Lemma 3.4 and the

estimate (3.96), imply that

(3.97) lim sup Uw(.,t) ( 3 < E.

t-)i~o L2 (R.(d)) -

Since e > 0 is arbitrary this implies (3.71), as required.

The arguments given above, applied to vz, vm and Vn, show that

the conclusions of Theorem 3.1 hold for all h such that

h_ E CO(C+ U CO U C_). Moreover, this set is dense in L2 (R
3) and hence

* CO(C+ U CO U C_) is dense in 1f.7 Pf K by (12, Cor. 8.12). These

facts can be used to extend (3.62) to all h E K because the mappings

U(t) : Xf - L2(R
3) and U0(t) : Xf - L2(R

3) defined by U(t)hf

- exp (-itA I/2) hf and U0 (t)hf = v (t,*) are uniformly bounded for all

t E R (see [11, p. 32]). The density argument needed to extend (3.62)

to all h E I has been given in many places; see, for example, (9, Ch. 21

or [10, p. 260].
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§4. Transient Guided Waves.

The asymptotic behavior for t - of the guided component

U (t,') - Pg u(t,") is derived in this section. u (t,') is a sum inX

of mutually orthogonal partial waves uk(t,") = Pk u(t,") - Re {Vk(t,")},

I < k < No. The starting point for the analysis is the integral

representation

(4.1) vk(tx'y) f J k(x,y,p) exp (-itWk(pl) hk(p)dp

where

(4.2) hk(P) = 3 k(x,yp) h(x,y) c 2(y) P' (y)dxdy

and the integrals converge in JC and L2(k), respectively. The integral

in (4.1) can be written

(4.3) vk(txy) ' -2 J exp {i(x p- t W k(IpI))} ,k(y'P) k(p)dp.

This is an oscillatory integral that can be estimated by the method of

stationary phase when Rk C CO (wk). To apply the method define

r a A2 +I Ix

(4.4) t - r go, x, M r lt, x 2  r 2

" ( 0' 1,,) 6 S2 C R
3

31
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2 3where S denotes the unit sphere in R . Then (4.3) takes the form

(4.5) vk(t'x'y) f "k exp fir ek(P,')} gk(p y) dp

where

ek(PE) - ELI+ E2P2 - Eo WOWIp)

* (4.6)1
gk(p'y) - (27r) - I *k(y-p) hk(P)

Estimates for large r of the integral in (4.5) are needed that are

uniform for (E,y) in compact subsets of S2 x R. Such estimates are

provided by a version of the method of stationary phase due to

M. Matsumura (5]. A form of Matsumura's results applicable to (4.5) was

presented in [il, Appendix]. This result is applied below to estimating

vk

The phase function Ok has a point of stationary phase if and only

if

(4.7) Uk(IPI)P/IpI - x/t

where

(4.8) Uk(pI) W(IpI)

is the group speed associated with the dispersion relation w - Wk(IpI).

It will be assumed, for brevity, that UkO) is a monotone decreasing

function that maps Ok onto (cm,c(o)). in this case (4.7) has a unique

solution if jx/t lies in the range of Uk(IpI); that is
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(4.9) cm < ,xl/t < c(e),

and no solution otherwise. The solution is given by

(4.10) p - Qk(lxl/t) x/1xl

where Qk is the inverse function to Uk. By calculating the Hessian 6"

one can show that

(4.11) r 2 Idet e,,(p,E)j _ t2 Uk(I) Iu (IPlW/Ipl i

and sgn ek (p,E) - 0. In particular, each point of stationary phase is

non-degenerate and makes a contribution

(pj' exp {i(ljl lp[-tWk(Ipl))} Ok(ylP k(p)(4.12) v (t,x,y,p) t{-(p~~j~p~}/

to the integral in (4.3), where p is given by (4.10). For jxj/t outside

the interval (4.9) there is no point of stationary phase. Thus the

stationary phase approximation to vk(t,x,y) is given by

CO CO

(4.13) v (txy) - x(Ixl/t) vk(t,x,y,Qk(lxl/t) x/ixI)

where X is the characteristic function of the interval (cm,c(-)) and one

has

Theorem 4.1. For all h E K such that hk G Co(s) there exists a

constant C - Ck(h) such that

(4.14) lVk(t,x,y) - vk(t,x,y) < C/t 2

for all t > 0, x e R2 - {0} and y E R.
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Theorem 4.1 can be proved by application of Theorems A.1 and A.2

of [11]. The proof that k(y,p) has the required p-derivatives is

lengthy but straightforward and will not be given here. If hk is not a

smooth function then Theorems A.1 and A.2 are not applicable and the

estimate (4.14) may fail. However, the definitions (4.12) and (4.13) are

meaningful for all h 6 K and one has

Theorem 4.2. For all h E X, all t > 0 and k 1, 2, 3,... one has

(4.15) V0(t,.) e

and

(4.16) 1V(t,')I. IhkIL (/) - IPkhI.

Moreover, the mapping t - vk(t,) is continuous from R+ to JC and

(4.17) lim IVk(t,) - v0(t,..)IK 0.

The proofs of these properties are the same as those for the

Pekeris profile, given in (10], and are not reproduced here. On

defining

Go

(4.18) u,(t,x,y) - Re {v(t,x,y)}

one also has

Corollary 4.3. For all h K I and k - 1, 2, 3,..-,

(4.19) lir Iuk(t,.) - uk(t,*)lX ' 0.

If h E L'(R 3) then uk(t,') 6 L'(R 3) and asymptotic wave functions

for the first derivatives of uk can be constructed. Indeed, if
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00

E CO ( ) then the first derivatives of vk are given by

Dt Vk(t,X, y) = - exp {i(x"- p - t wk( 2p k ))}(-'W(IpI))Yky'p) k(p)dp,

(4.20)

D. v (t,xy) - exp{i(x p- t wk(IPj)) (ipj) *k(y~p) hk(p)dp (j = 1,2),

1q

k expT.2 pk h'j) k(P)dp.

Dy Vk(t,x,y) exp x" p-t Dk(lpl))} Dy k(y'p) hk(P)dp,

These integrals have the same form as the integral (4.3) for vk. The

corresponding asymptotic wave functions are defined by

vko(t,x,y,p) i (-i k(IpI)) v(t'x'y'P)

(4.21)

v0 (t,x,y, p ) = (ipj) Vk(t,x,y,p) (j 1,2),

k3 (txyp) = DV k(t,x,y,p), and

v k(t,x,y) = XO(Il/t) Vkj(t~xYQk(IxIlt ) x/Jxj)

for j - 0,1,2,3. The analogue of Theorem 4.2 is

Theorem 4.4. For all h e LI(R3 ), all t > 0 and k - 1,2,3,-.. one

has

(4.22) v O(t,-) C L2(R
3), j = 0,1,2,3,

kj

3
(4.23) vo(t,)I2c + j~ v(t)I (R3 ,pdd) 2 I" 2 hvO K jtl k 2 plxd)k
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and

(4.24) lim AD vk (t, (t,)IL(R) = 0, j = 0,1,2,3.

The proof of Theorem 4.4 is the same as for the special case of

the Pekeris profile which was treated in detail in [10].

The preceding discussion was restricted to the special case

where Uk(P) is monotonic. If Uk(P) has a finite number of maxima and

minima there are a corresponding number of points of stationary phase

and the form of the asymptotic wave function is more complicated but

still tractable. In the case of the Pekeris profile, treated in (10],

there are two points of stationary phase. Cases that lead to

infinitely many stationary points have not yet been encountered. They

would require additional analysis.

p



§5. Asymptotic Distributions of Energy for Large Times.

The total energy of the acoustic field u(t,xy), given by (2.14),

is constant for t > T. The same is true of the partial waves uf, ug9 and

u k, k - 1, 2, 3,**. Moreover, it was shown in [12] that {Pf PP P2'''I

is a complete family of orthogonal projections in XC that reduces A. It

follows that

(511A1/2 hil2 - HAll2 hfI 1+ A"12 hkl2

which may be interpreted as an energy partition theorem. The partial

energies

E(uf1 R3 , t) = I A 1/2h fv2,

(.)1E(u kR 3,t) - 1A 1J2 h 2 , k - 1, 2, 3, *1*, N1

can be calculated from the source function f(t,x,y) and the normal mode

functions. The relationship between h and f is given by (2.7), which

implies that

(5.3) h_(p,q) - i X.-l (p,q) f _(X 1 2 (pq),p,q)

where

(5.4) f_(w,p,q) f exp (i w T) *(X,y, p,q) f (T,X, Y) C (y) p(yddd

and similarly

37
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(5.5) k(p) - U01(IpI) fk(wk(IPI),P)

where

(5.6) fk(W,P) R 3 exp (iWT) *k(x,y.p) f(T,x,y) c- (y) - ydydxdT.

It follows that the partial energies are given by

(5.7) E(ufR ,t) JR If..()12 (p,q),p,q)12 dpdq

and

(5.8) E(uk,R 3t) J fk(wk(IpI),p)1 2 dp, k - 1, 2, 3,.--,

for every t > T.

The theorems of §3 and §4 make it possible to calculate asymptotic

distributions of energy in bounded and unbounded subsets of R3 . Only the

principal results are formulated here. The proofs are omitted since

they are the same as those for the Pekeris profile which were given in (10].

The notation

(5.9) Er(u,K) - lim E(u,Kt)

will be used whenever the limit exists. A first result is the transiency

of all waves with finite energy in stratified fluids:

(5.10) E0(u,K) - 0 for all compact sets K C R3 .

Lvv"
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The Free Component. The results of §3 imply that in each half-

space R;'(d) (resp. R!(d)) U f behaves like a wave in a homogeneous

medium. Thus if C + (resp. C-) denotes a cone in R 3(d) (resp. R 3(d))

then Corollary 3.3 arnd the results of [9] imply

Er(ufqC± -c
2(+_) p(±_) dC (pi 2 + q 2) Ih(p,q) 12 dpdq

-P(±o) JC± jif(W (p,q),p,q)12 dpdq.

It follows that if

(5.12) S - {(xzy) : d, y < d2 l

is a slab then

(5.13) E(uf%1S) - 0.

The Guided Component. Consider the family of cones defined by

(5.14) C(e,d) - {(x,y) :ly - dl < elxii

where e > 0. Then, in contrast to (5.11), one has

(5.15) E'(uk,C(c-9d)) - E'(uk,RO) MIAI/2 hkI2

for every e > 0 and k - 1, 2, 3,e-- (see [10, Theorem 5.5]). Finally,

if S is the slab defined by (5.12) then one can show by means of Theorem

4.4 that
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§6. Semi-Infinite and Finite Layers.

The preceding analysis is extended in this section to the cases

of semi-infinite and finite layers of stratified fluid. The extensions

are based on the normal mode expansions for these cases that were derived

in [12, §9]. Only the principal concepts and results are formulated

here since the proofs are entirely analogous to those of the preceding

sections.

Semi-Infinite Layers. As in (12, §9] the fluid is assumed to

occupy the domain R3 and to satisfy the Dirichlet or Neumann boundary

condition. Here the functions p(y) and c(y) are assumed to be

Lebesgue measurable and satisfy

(6.1) 0 p~y) 0 < C m < c(y) <CM <
(6.1) ~ ~~0 < Pm < P(Y) < PM<  ' 0< a _ _c M

and

(6.2) Ip(y) P(-) < C y-aIc(y) - c()I < C y-a

for all y > 0 where P.' I:H' P(-)' Cm, cM c(-), C and a are constants and

(6.3) a > 3/2.

As in [12, §9] the acoustic propagators for p(y) and c(y) corresponding

to the Dirichlet and Neumann conditions will be denoted by AO and A',

respectively. They are selfadjoint non-negative linear operators in

IC+ - L2 (R+, 2c-(y) p-1 (y)dxdy).

The normal mode functions *J(x,y,p,X) for AJ , as defined in

(12, §9], are parameterized by (pA) e 1 - {(p,A) I > c2(_)1pl 2 }.

41
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Their asymptotic form for y i is given by

(6.4) 1A(x,y,p,q)- c(- p ,X {ei(p x- y q) + RJ ei(p x+yq)

21

where q - q(IpIA) _ (X c-2(_) - 1p12) / , c(Ipt) - (p(oo)/4wq((pl,X)) 1/2

RJ - RJ(Ipl,X) and RJ(pIA)I - 1. As in the preceding sections, it

will be convenient to introduce new parameters: (p,A) * (p,q)

= (p,q(IpjA)) E R+ and normal mode functions

(6.5) * (x,yp,q) - (2q)1/2c(oo) J (Z,y,p,)

where

(6.6) A - X(p,q) - c2(_)(1p1 2 + q2).

The asymptotic form of O+& is

(6.7) 4.xypq) c(:)P1/2 (,,) {ei(p-x~qy) + RJ ei(P-x lY)} y+67 xypq (27r) 3/2 y s.

The second family defined by

(6.8) I_(x,y,p,q) O *J(x,y,-pq)

is also needed. It satisfies

l ~c (00) p/ (o

(6.9) *J(x,y,p,q) - (27)3'1? {ei(Pox+qy) +aJ ei(Px-qy)}, y 4 o.

The expansion theorem of [12, §91 implies that the limits

(6.10) fV(p~q)-L2(R4 )-1im Jx5 J *(x,y~p,q) f(X,y) c-2(y) p '(y)dxdy
II+- o 0~



43

exist. Moreover, if

(6.11) IC L2 (R')

is defined by 40f fi then O is a partial isometry with range

L 2 (R;) and

4,j4,j+ J-1

(6.12) *j* T j-
+ + 01 kk-i

where k: 0 L ) are the partial isometries associated with the

guided wave normal modes *k(x,y,p) of (12, §9].

Normal mode expansions for AJ are given by (6.12) with either the

+ or - sign. (6.12) implies that the orthogonal projections in 3+

defined by

(6.13){ j* j

TO 'j *Id 1 < k < N

form a complete family that reduces AJ .

Transient Free Waves for Semi-Infinite Layers. The free component

of a complex acoustic potential

(6.14) v(t,) - exp (-it (Aj ) 11 2) h, hE 6+,

is given by

(6.15) vf(t.) - v(t, e) - exp (-i t (AJ)1/2) A h
Tf f

The 01-representation of v f is
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(6.16) Vf (ItSX,Y) J 3A(x, y, p.q)exp (-i tw(p, q)) h(p, q) dpdq

where w(p,q) - c(o)vIlpl 2 + q 2 . Moreover, as in §3 one can write

(6.17) 4(x,y,p,q) ( ) p/2 {e y) I(y,p,q) +ei(pUx-Y)R(y,pq)

where

lir Ij(y,p,q) - 1,

(6.18)

lir RJ(y,p,q) = (pX)

Then, proceeding as in §3, one can prove the following analogue of

Theorem 3.1.

Theorem 6.1. For every h E K+ let vf(t,) be defined by

(6.19) vf(tx,y) - exp (-it c(-) AC 2 ) h 0 (x,y). (x,y) 6 R8

where ho E L2 (R 3 ) is the function whose Fourier transform is

c(o) pm1/2 h(p,q), (pq) 6 R'

(6.20) ho(pq) -

0 , (pq) E R3 .

Then

(6.21) 1 In Ivf(t,) - v (t,.)1 0.
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Transient Guided Waves. For both semi-infinite and finite

layers the form of the guided components vk(t,o) is precisely the same

as for the case of an infinite layer. Thus the analysis of §4 applies

unchanged to these cases.
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1,3 (y ) - o ( -)j C ( y ) 
"

' 
,  Ic (y ) c ( : )J I C (Iy ) 

"
-

for :y > 0, where a > 3/2. Semi-infinite and finite layers are also

treated. The acoustic potential is a solution of the wave equation

- ( y) 7• (0-(y) 
7
u) - f(tx,y)

where x - (x.x,) are horizontal coordinaces and f(t,xy) characterizes

the wave sources. The principal results of the analysis show that u is

the sum of a free component, which behaves like a diverging spherical

wave for large t. and a guided component which is approximately localized

in regions ly - yjI 
< 

h j where c(y) has minima and propagates outward in

horizontal planes like a diverging cylindrical wave.
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